Search results for "response to infection"

showing 4 items of 4 documents

Viral fitness correlates with the magnitude and direction of the perturbation induced in the host’s transcriptome: the tobacco etch Potyvirus—tobacco…

2018

Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyv…

0301 basic medicinePotyvirusViral fitnessGene ExpressionBiologyReal-Time Polymerase Chain ReactionHost-virus interactionModels BiologicalTranscriptome03 medical and health sciencesDarwinian FitnessTobaccoGene expressionGeneticsTranscriptomicsGeneMolecular BiologyDiscoveriesEcology Evolution Behavior and SystematicsPlant DiseasesNicotiana tabacum PotyvirusGeneticsNicotiana tabacumPotyvirusresponse to infection Systems biologyPotyvirusRNAMicroarray Analysisbiology.organism_classificationResponse to infectionVirus evolutionRNA silencing030104 developmental biologyViral evolutionHost-Pathogen InteractionsTEVGenetic FitnessTranscriptomeSystems biologyHost–virus interaction
researchProduct

Identifying Early Warning Signals for the Sudden Transition from Mild to Severe Tobacco Etch Disease by Dynamical Network Biomarkers

2019

This article belongs to the Special Issue The Complexity of the Potyviral Interaction Network.

0106 biological sciences0301 basic medicineComplex systemsSystems biologyPotyvirusDiseaseBiologytobacco etch virusSeverity of Illness Index01 natural sciencesArticlePlant VirusesTranscriptomeViral Proteins03 medical and health sciencesPlant-virus interactionpotyvirusGene Expression Regulation PlantVirologyProtein Interaction MappingTobaccoGene Regulatory NetworksProtein Interaction Mapscomplex systemsGenePlant DiseasesGeneticsTransition (genetics)Tobacco etch virusGene Expression Profilingsystems biologyDNBBiotic stressresponse to infectionbiology.organism_classificationplant-virus interactionTobacco etch virusphase transitionsprotein-protein interaction networks030104 developmental biologyInfectious DiseasesPhase transitionsHost-Pathogen InteractionsMutationBiomarker (medicine)BiomarkersSignal Transduction010606 plant biology & botanyViruses
researchProduct

Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an anti-apoptotic viral gene

2008

ABSTRACT Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (ΔM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in ΔM36-infected macrophages and rescued the growth of the mutant. In vivo, ΔM36 infection foci in liver tissue contained sign…

Genes ViralFas-Associated Death Domain ProteinvirusesImmunologyMutantCytomegalovirusCellular Response to InfectionApoptosisMicrobiologyVirusCell LineMiceIn vivoVirologyAnimalsFADDCaspaseDNA PrimersGenes DominantMice Inbred BALB CBase Sequencebiologyanti-apoptotic viral geneBIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.MCMV; FADD; anti-apoptotic viral geneFlow CytometryMolecular biologyMice Inbred C57BLViral replicationApoptosisVirion assemblyInsect ScienceFADDbiology.proteinBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.MCMV
researchProduct

ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation

2016

ABSTRACT Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro . In this study, an in-depth analysis of the role of ISG15 in RSV infection is presented. ISG15 overexpression and small interfering RNA (siRNA)-silencing experiments,…

0301 basic medicineSmall interfering RNAvirusesImmunologyCellular Response to InfectionRespiratory Syncytial Virus InfectionsUbiquitin-Activating EnzymesBiologyMicrobiologyVirus03 medical and health sciencesIn vivoImmunityRNA interferenceVirologyCell Line TumorEndopeptidasesHumansRNA Small InterferingRespiratory Tract InfectionsUbiquitinsInnate immune system030102 biochemistry & molecular biologyRespiratory tract infectionsInfantEpithelial CellsISG15VirologyImmunity Innate030104 developmental biologyInsect ScienceRespiratory Syncytial Virus HumanCytokinesRNA InterferenceUbiquitin ThiolesteraseProtein Processing Post-TranslationalHeLa Cells
researchProduct